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Abstract

We consider the problem of finding a mesh such that 1) it is the closest, with respect to a suitable metric, to
a given source mesh having the same connectivity, and 2) the volumes of its cells match a set of prescribed
positive values that are not necessarily equal to the cell volumes in the source mesh. This volume correction
problem arises in important simulation contexts, such as satisfying a discrete geometric conservation law and
solving transport equations by incremental remapping or similar semi-Lagrangian transport schemes. In this
paper we formulate volume correction as a constrained optimization problem. Specifically, the distance to
the source mesh defines an optimization objective, while the prescribed cell volumes, mesh validity and/or
cell convexity specify the constraints. We solve the optimization problem numerically using a sequential
quadratic programming (SQP) method whose performance scales with the mesh size. To achieve scalable
performance we develop a specialized multigrid-based preconditioner for optimality systems that arise in
the application of the SQP method to the volume correction problem. Numerical examples illustrate the
importance of volume correction, and showcase the accuracy, robustness and scalability of our approach.

Keywords: Lagrangian motion, incremental remap, semi-Lagrangian transport, departure volume
correction, volume fraction, passive tracer transport

1. Introduction, motivation and background

Mesh motion is at the core of many numerical methods for time dependent flow and structure problems.
Examples include Lagrangian hydrodynamics methods [1], in which the mesh evolves with time in order
to track deformations of the problem domain, and the related Arbitrary Lagrangian-Eulerian [2] methods,
which incorporate a mesh rezoning step to mitigate excessive mesh deformations and mesh tangling. Another
important example are semi-Lagrangian methods for advection problems [3, 4], including schemes utilizing
incremental remapping [5, 6] as a transport algorithm. Such methods perform a single Lagrangian step and
then remap the resulting solution back to a fixed Eulerian mesh.
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Figure 1: A non-divergent velocity field deforms an initial cell κ(t0) into a cell κ(t1) having the same volume. Approximation of
vertex positions by numerical time integration (diamonds) and their subsequent linking by straight lines yields an approximate
deformed cell κ̂(t1) with a different volume.

Despite individual differences all such methods require computation of the mesh motion under a given
velocity field u. Typically, most methods approximate the deformed Lagrangian mesh by 1) solving nu-
merically the kinematic relation dx/dt = u to estimate the new cell vertex positions, and 2) connecting
them by straight lines. Consequently, the cells in the deformed mesh incur two types of errors: one due to
the approximation of the vertex trajectories and the second due to the approximation of the deformed cell
edges by straight lines. The first kind of error depends on the time stepping and can be viewed as a time
discretization error, while the second type can be interpreted as a spatial error.

The temporal and spatial errors combine to produce approximate Lagrangian cells whose volumes do
not match the volumes of the exact Lagrangian cells; see Figure 1 for an illustration. A notable feature
of numerical methods relying on mesh motion is that volume approximation errors may have an outsized
influence on their accuracy. In particular, even if the temporal and spatial errors in the approximation of
the Lagrangian cell are better than first-order accurate, the resulting scheme may fail to preserve constant
solutions of the system.

To understand this phenomenon let us examine the Lagrangian motion of a single mesh cell κ(t), repre-
senting a fluid parcel with material density ρ, under a non-divergent velocity field u. Let κ(t0) denote the
initial position of the fluid parcel and κ(t) be the exact Lagrangian parcel at time t > t0, and

|κ(t)| =
∫
κ(t)

dV and Mκ(t) =

∫
κ(t)

ρdV .

Because non-divergent Lagrangian flows preserve volume and mass there holds

d

dt
|κ(t)| = 0 and

d

dt
Mκ(t) = 0. (1)

Suppose now that ρ = const and κ(t) moves from its initial position at time t0 to a new position at time
t1 = t0 + ∆t. Owing to (1)

ρ(t1) =
Mκ(t1)

|κ(t1)|
=
Mκ(t0)

|κ(t0)|
= ρ(t0) = const.

On the other hand, since κ(t1) is not known exactly, except for some trivial velocity fields, a numerical
scheme uses an approximation κ̂(t1) for which |κ̂(t1)| 6= |κ(t1)|; see Figure 1. As a result, the material state
ρ̂ in the approximate Lagrangian fluid parcel κ̂(t1) is given by

ρ̂(t1) =
Mκ(t1)

|κ̂(t1)|
6= Mκ(t0)

|κ(t0)|
= ρ(t0). (2)

In other words, the constant density is not preserved. Yet, many Lagrangian and semi-Lagrangian methods
rely on relationships such as (2) to approximate densities, tracer mixing ratios, material volume fractions
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and other quantities of interest. This effectively renders such methods unable to represent exactly constant
solutions despite the fact that κ̂(t1) can be an accurate approximation of the exact fluid parcel κ(t1).

This example illustrates the consequences of violating the broader notion of a Discrete Geometric Con-
servation Law [7] (D-GCL) for a given numerical scheme. D-GCL stipulates that computation of geometric
quantities in the deformed mesh configuration must be done in a way that allows the associated numerical
scheme to reproduce constant states for any mesh motion.

One possible pathway for achieving a D-GCL for (2) is to enforce equality of deformed cell volumes at all
time steps to their initial volumes in the undeformed configuration. This can be done by further deforming
κ̂(tn) to a corrected cell κ∗(tn) such that

|κ∗(tn)| = |κ(t0)| ∀n . (3)

The corrected cell must be valid and can be subject to further mesh quality conditions such as convexity. In
addition, we require that κ∗(tn) remain close to κ̂(tn) at all time steps, because the latter serves as a proxy
for the unknown exact Lagrangian cell κ(tn). We refer to the task of finding a volume-corrected cell κ∗(tn)
for every cell κ̂(tn) in a given deformed mesh as the volume correction problem.

This paper solves the volume correction problem by couching it in a constrained optimization formulation.
The idea is to seek a mesh whose cells κ∗(tn) minimize the distance to the cells κ̂(tn) of the source mesh,
while satisfying constraints expressing the volume condition (3) and appropriate mesh quality conditions.
The optimization variables are the mesh vertices, i.e., the formulation does not require additional mesh
points as some of the approaches reviewed below. The resulting optimization formulation of the volume
correction problem is a nonlinear programming problem (NLP) with an equality constraint corresponding
to (3) and possible additional inequality and/or equality constraints expressing cell quality conditions. To
solve the NLP efficiently we develop a problem-specific preconditioner for the inexact trust-region sequential
quadratic programming (SQP) method of [8]. The preconditioner is based on a reduction of the optimality
systems arising in trust-region SQP to a matrix equation with the structure of a discrete Laplacian, which
can be solved using algebraic multigrid methods.

Existing work on discrete geometric conservation laws can be broadly divided into three categories. The
first category comprises methods which alleviate but do not fully eliminate the violation of the relevant D-
GCL. Such methods typically use additional Lagrangian points to compute more accurate approximations
of the deformed cells. For example, the semi-Lagrangian CSLAM method in [9] can evolve up to three
additional points per quadrilateral side. CSLAM connects the additional points by straight line segments
to obtain a better polygonal approximation of the exact boundary of the true Lagrangian cell.

The second category includes works that view the D-GCL as a constraint on the numerical scheme.
These approaches formulate a set of conditions that must be satisfied by the equations computing the vertex
positions, and various surface and volume integrals; see, e.g., [10] and [11, 12]. For instance, the D-GCL in
[11] requires the change in cell volumes between two time steps to equal the volumes of the areas swept by
the cell boundaries. This leads to a particular choice of integration rules for calculating force integrals and
updating vertex positions.

The third category of methods [13, 14, 15, 16] views the D-GCL as a constraint on the mesh, i.e., they
solve some form of the volume correction problem stated earlier. For instance, [13] address this problem
for potential flows by using a heuristic adjustment procedure to perturb the mesh cells until they satisfy
an appropriate volume condition. This is done in three stages by first adjusting regions of elements until
the entire region has the correct volume, then repeating the adjustment for “rings” of elements, and finally
proceeding to adjust the volumes of the individual cells in each ring. Cell adjustment is performed by sliding
cell vertices along the characteristics, which prevents introducing bias in the direction of the flow. For
non-divergent flows [14] reduces this complex heuristic to a simple element-by-element volume adjustment,
leaving the vertices unperturbed and correcting only element midpoints. For logically Cartesian meshes
[14] recommends adjusting the elements in a row-wise, column-wise or staircase-like pattern. However,
there are no theoretical assurances that the adjustment will terminate and/or yield a valid mesh in general
configurations.

The Monge-Ampere (MA) trajectory correction [17, 18] is another approach that solves a version of the
volume correction problem for incompressible fluids. The idea of MA correction is to enforce volume equality
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implicitly by enforcing the condition J−1 = 1 where J is the flow Jacobian [17, p. 180]. This is accomplished
by correcting the numerical path-mean velocities with a gradient of a scalar potential. The scalar potential
satisfies a form of the Monge-Ampere equation (MAE), thus the term Monge-Ampere trajectory correction.
We note that the MA trajectory correction recovers the volume constraint (3) exactly only when closed-
form analytic solutions of the MAE are available, as in [18]. In practice this is rarely the case, and the
MA trajectory correction approach trades volume error for the spatial discretization error incurred in the
solution of the MAE, as illustrated in [17, Table 1].

Our optimization-based solution of the volume correction problem falls in the third category of methods
aiming to achieve the D-GCL. As such, it is less intrusive than the methods belonging to the second category,
which require special problem discretizations. Specifically, our method can be viewed as “postprocessing”
of the mesh motion and is easily incorporated into existing implementations of Lagrangian schemes.

To the best of our knowledge our method is also the first systematic application of NLP formulations
and large-scale optimization algorithms in the context of discrete geometric conservation laws. Casting
the volume correction problem as an optimization problem offers valuable theoretical and computational
advantages. First, provided the problem has a solution, the computed NLP solution provably satisfies the
volume constraint (3) in exact arithmetic, and to near machine precision in practice. This is an important
advantage over the methods from the first category and the trajectory correction scheme based on numerically
solving the MAE, [17].

Second, the NLP solution is locally optimal ; if the original deformed mesh is chosen as the initial guess
for the NLP solver (in addition to being part of the objective function definition), then the NLP solution
represents a constraint-consistent mesh that is in some sense closest to the original constraint-inconsistent
mesh. The latter carries important information about the mesh motion, and so the local solution of the
NLP provides good balance between maintaining accurate cell volumes, which we view as a hard constraint,
and maintaining the overall trajectories of cell vertices. In fact, the numerical results indicate that, as a side
effect, our method greatly improves the accuracy of vertex trajectories for Lagrangian mesh motion, with
respect to the exact trajectories.

Third, our approach is based on a globally convergent optimization algorithm that exhibits fast Newton
convergence near the solution and admits scalable linear solvers. The numerical tests demonstrate that the
optimization algorithm converges in only a handful of iterations, while its computational cost scales linearly
with the mesh size owing to the devised multigrid-based preconditioner.

Fourth, the optimization approach enables a robust and systematic implementation of volume correction
without the need to trace back the flow field point by point (or region by region). In contrast, the methods
based on heuristic cell update rules, [13, 15, 16], may encounter intricate update scenarios, for example
when multiple trace-back layers intersect, resulting in loss of automation [13, p. 2010]. Additionally, the
implementation of such methods can be challenging, especially in three dimensions [13, p. 2003].

Finally, we point out that the optimization framework enables the enforcement of additional constraints,
such as cell validity and cell convexity, and may include additional mesh-quality metrics, all of which would
be difficult to incorporate rigorously in any of the previously discussed schemes. In fact, to the best of our
knowledge, our approach is the first to guarantee cell convexity in the context of volume correction.

We consider two representative simulation settings to illustrate the potential of the new optimization-
based volume correction algorithm. In the first one we use the algorithm to augment a standard semi-
Lagrangian incremental remap transport scheme [6] to a volume-corrected scheme. Numerical solution of
a passive tracer transport problem with multiple tracers reveals that the corrected scheme yields tracer
volumes accurate to a machine precision, which is a significant improvement over the original uncorrected
scheme. Besides the accuracy gains, this setting illustrates the ease with which the optimization-based
volume correction can be incorporated in an existing scheme.

The second setting uses Lagrangian mesh motion to show that in addition to enforcing the desired cell
volumes, our algorithm also brings about significant ancillary enhancements in the mesh geometry. Aside
from the aforementioned improvement in the vertex trajectories we observe a very close alignment between
the barycenters of the true and corrected meshes, and recovery of convex mesh cells from non-convex source
meshes. These results suggest that our algorithm provides a flexible platform to address multiple mesh
quality tasks extending beyond only correcting cell volumes.
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Figure 2: Quadrilateral cell κi, points P (κi) and decomposition in two pairs of triangles.

We have arranged the paper as follows. Section 2 introduces the relevant notation, gives a formal
statement of the volume correction problem and transforms it into a constrained optimization problem.
Section 3 develops an optimization algorithm specifically tailored to the volume correction problem. Section
4 examines two different application contexts for the volume correction algorithm and Section 5 presents
the corresponding numerical results.

2. The volume correction problem

This section gives a formal statement of the volume correction problem and then presents its transforma-
tion into a constrained optimization problem. We start by reviewing notation and mesh nomenclature. To
avoid notational and technical complications that would diminish the clarity of the presentation, we focus
on two space dimensions and meshes comprising quadrilateral cells with straight sides. Section 2.4 briefly
discusses the volume correction problem and its reformulation into an optimization problem for general
meshes.

2.1. Notation

We assume that Ω ⊂ R2 is a simply connected domain with polygonal boundary Γ = ∂Ω. Bold face fonts
denote vector quantities and standard fonts are scalar quantities. Depending on the context the symbol | · |
can be the Euclidean length of a vector in Rk, i.e., |q|2 =

∑k
i=1 q

2
i for q ∈ Rk, the cardinality of a finite set,

or the oriented measure of some bounded region.
Some mesh nomenclature germane to this paper follows. Except when noted otherwise, K(Ω) denotes a

conforming partition [19] of Ω into quadrilateral cells κi, i = 1, . . .m, where m = |K(Ω)|. A cell κi is valid
if it is star-shaped and a mesh K(Ω) is valid if all of its cells are valid. Note that valid cells have nonzero
oriented volumes, i.e., |κi| 6= 0. The symbol P (Ω) stands for the set of all mesh vertices pj = (xj , yj),
j = 1, . . . p, where p = |P (Ω)|. The vector of all vertex coordinates is p ∈ R2p. The set of all mesh vertices
belonging to the boundary Γ is P (Γ), and P (κi) = {pi,1, . . .pi,4} are the vertices belonging to a quadrilateral
κi ∈ K(Ω); see Figure 2. Without loss of generality we can assume that P (κi) are ordered counterclockwise
and so every cell in a valid mesh has positive oriented volume, i.e., |κi| > 0 for i = 1, . . .m.

We also need the cell volume function c : K(Ω) → Rm such that its ith component corresponds to the
volume of κi, i.e.

ci(K(Ω)) = |κi|, i = 1, . . . ,m, (4)

and the convexity indicator function I : K(Ω)→ Rm such that

Ii(K(Ω)) =

{
1 if κi is convex

0 if κi is nonconvex.
(5)
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We recall that for quadrilateral cells

ci(K(Ω)) =
1

2

(
(xi,1 − xi,3)(yi,2 − yi,4) + (xi,2 − xi,4)(yi,3 − yi,1)

)
.

A convenient way to express validity and define a convexity indicator for a quadrilateral cell κi is by splitting
it into two pairs of triangles obtained by connecting the pairs of its opposing vertices; see Figure 2. For
r = 1, . . . , 4 the triangle τi,r has vertices (par ,pbr ,pcr ) where

(ar, br, cr) =


(1, 2, 4) r = 1
(2, 3, 4) r = 2
(1, 3, 4) r = 3
(1, 2, 3) r = 4.

(6)

For r = 1, . . . , 4 let tr : K(Ω) → Rm be the function that gives the oriented volume of the rth triangle in
cell κi, that is,

tri (K(Ω)) = |τi,r|. (7)

In terms of cell vertices these functions are given by

tri (K(Ω)) =
1

2
(xi,ar (yi,cr − yi,br )− xi,br (yi,ar − yi,cr )− xi,cr (yi,br − yi,ar )). (8)

The following conditions for validity and convexity of quadrilateral cells are straightforward.

Validity. A cell κi ∈ K(Ω) is valid if the oriented volumes of at least one pair of its triangles are positive,
specifically

∀ i = 1, . . .m tri (K(Ω)) > 0 for r = 1, 2 or r = 3, 4. (9)

Convexity. A cell κi ∈ K(Ω) is convex if the oriented volumes of all its triangles are positive, i.e.,

∀ i = 1, . . .m tri (K(Ω)) > 0 for r = 1, . . . 4. (10)

Thus, for quadrilateral cells we can set

Ii(K(Ω)) =

{
1 if tri (K(Ω)) > 0 for r = 1, . . . 4

0 if tri (K(Ω)) ≤ 0 for some 1 ≤ r ≤ 4.

Suppose that K̃(Ω) is another cell partition of Ω with the same connectivity as K(Ω). We distinguish

the entities associated with this mesh by using the tilde accent, i.e., κ̃i are the cells in K̃(Ω), p̃j are the

vertices in this mesh, P̃ (Γ) are the vertices on the boundary and so on. Without loss of generality we may

assume that the cells and the mesh vertices in K̃(Ω) are numbered in the same order as in K(Ω). In other

words, if κi ∈ K(Ω) has vertices {pi1 ,pi2 ,pi3 ,pi4}, then κ̃i ∈ K̃(Ω) has vertices {p̃i1 , p̃i2 , p̃i3 , p̃i4}. With

this assumption, define the distance between K(Ω) and K̃(Ω) according to

d(K(Ω), K̃(Ω)) =

 p∑
j=1

|pj − p̃j |2
 1

2

= |p− p̃|. (11)

2.2. Statement of the volume correction problem

Consider a pair {K̃(Ω), c0} where K̃(Ω) is a given mesh and c0 ∈ Rm is such that

m∑
i=1

c0,i = |Ω| and c0,i > 0 ∀ i = 1, . . . ,m. (12)

The volume correction problem seeks a mesh K(Ω), which has the same connectivity as K̃(Ω) and is the

closest, with respect to (11), mesh to K̃(Ω) satisfying the following conditions:
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(a) the volumes of its cells match the values prescribed in c0; and

(b) every cell κi ∈ K(Ω) is valid; or

(c) every cell κi ∈ K(Ω) is convex; and

(d) boundary points in K(Ω) correspond to boundary points in K̃(Ω).

In what follows we refer to K̃(Ω) as the source mesh, to the set c0 as the vector of desired cell volumes, and
to K(Ω) as the volume compliant mesh.

Depending on a number of factors the volume correction problem may or may not have a solution. One
important setting in which solutions always exist arises when the source mesh K̃(Ω) is a transformation of
another mesh K̆(Ω), having convex cells, and c0,i = |κ̆i|. In this case K(Ω) = K̆(Ω) is a trivial solution of
the volume correction problem. Precise qualification of sufficient existence conditions for solutions of the
volume correction problem is beyond the scope of this paper and so in the following we always assume that
this problem has a solution.

2.3. Volume correction as an optimization problem

The functions c, I, and tr depend on the mesh connectivity and the mesh vertices p. Assuming that the
mesh connectivity is fixed, it is convenient to view these functions as mappings R2p → Rm. Thus, in what
follows we use the notation c(p), I(p), and tr(p).

In order to formulate the volume correction problem as a constrained optimization problem we consider
the distance (11) between K(Ω) and K̃(Ω) as an optimization objective, while conditions (a)–(d) on the
volume compliant mesh provide the optimization constraints.

Condition (a) defines an equality constraint

c(p) = c0, (13)

which can be expressed as
C(p) = 0, (14)

where C(p) : R2p → Rm is the function
C(p) = c(p)− c0. (15)

On the other hand, (9) and (10) imply that (b) and (c) can be enforced through inequality constraints.
Since convexity implies validity, to streamline the presentation we focus on enforcing only (10). To express
the last condition as an optimization constraint note that (d) is equivalent to

p̃j ∈ P̃ (Γ)⇒ pj ∈ P (Γ). (16)

Let γ : R2 → R be such that γ(p̃j) = 0 for p̃j ∈ P̃ (Γ) and define the set

SΓ = {j : p̃j ∈ P̃ (Γ)}

containing the indices of all boundary points. Because we assume that the volume compliant mesh and the
source mesh have the same connectivity, it follows that (16) is equivalent to the equality constraint

γ(pj) = 0 ∀ j ∈ SΓ. (17)

Finally, we define a cost functional J0(p) : R2p → R as

J0(p) =
1

2
d(K(Ω), K̃(Ω))2 =

1

2
|p− p̃|2. (18)

The following optimization formulation then solves the volume correction problem: given a pair {K̃(Ω), c0}
find K∗(Ω) with vertices p∗ such that

p∗ = argmin
p

{
J0(p) subject to (14), (10), and (17)

}
. (19)
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A simplified optimization formulation. We consider several modifications to the general formulation (19)
that can be used to improve its efficiency. First, note that in many practical use cases the condition (17) can
be subsumed in the equality constraint (14) in a structure-preserving manner. One such use case is that of
rectangular domains Ω, where (17) can be enforced by eliminating the x-coordinates of the vertical-boundary
variables from the optimization formulation, and likewise eliminating the y-coordinates of the horizontal-
boundary variables. Second, we can enforce the convexity condition (10) weakly by using a logarithmic
barrier function to penalize the objective (18). These considerations allow us to drop all but the equality
constraint (14) and replace (19) by the following simplified equality constrained formulation:

p∗ = argmin
p

{
J(p) subject to C(p) = 0

}
, (20)

where

J(p) = J0(p)− β
m∑
i=1

4∑
r=1

log tri (p), (21)

and β > 0 is a mesh-dependent penalization parameter. The use of the logarithmic barrier penalty signif-
icantly reduces the occurrence of negative triangle areas. Moreover, for several examples it is possible to
obtain fully convex meshes at optimality, i.e., meshes that rigorously satisfy condition (10).

2.4. Formulation for other cell types

The statement of the volume correction problem in Section 2.2 is not limited to quadrilateral meshes.
It applies to general source meshes K̃(Ω) in two and three-dimensions comprising different types of cells,
including, e.g., polygonal and polyhedral cells. Application of the optimization formulation (19) to solve the
corresponding volume correction problem then boils down to proper definition of the constraints expressing
convexity and/or validity of the particular cell type. For general polygons and polyhedra one may invoke
some of the ideas found in e.g., [20]. A thorough discussion of all possible mesh configurations is clearly
beyond the scope of this paper.

However, specialization of (19) to simplicial cell partitions in two and three-dimensions is particularly
straightforward and we briefly explain the formulation. Indeed, suppose that K(Ω) is a conforming partition
of Ω into simplicial cells τi. Since a valid triangle or a tetrahedron is always convex, i.e., (b) implies (c), it
follows that we only need to formulate a constraint expressing (b). Recall that a triangle or a tetrahedron
is valid if and only if its volume is positive, and so the inequality constraint

c(p) > 0, (22)

is sufficient to enforce both (b) and (c). On the other hand, the desired cell volumes specified in c0 are
already positive and so, the equality constraint C(p) = 0 implies c(p) = c0 > 0, i.e., it ensures cell validity
independently of (22), thereby rendering it redundant. It follows that for triangular and tetrahedral meshes
the optimization formulation of the volume correction problem (19) specializes to

p∗ = argmin
p

{
J0(p) subject to C(p) = 0

}
. (23)

For a triangle τi with vertices P (τi) = (pi,1,pi,2,pi,3) the function c(p) is simply the function from (8):

ci(K(Ω)) =
1

2
(xi,1(yi,3 − yi,2)− xi,2(yi,1 − yi,3)− xi,3(yi,2 − yi,1)).

For a tetrahedron τi with vertices P (τi) = {pi,1, . . .pi,4} and edges E(τi) = {ei,1, . . . ei,4}, assume that the
vertices and the edges are numbered as in Figure 3. Then, the triple product of any three edges sharing a
vertex gives the volume |τi|. For example, using the edges sharing pi,1 we have the following definition of
the cell volume function:

ci(K(Ω)) =
1

6
|ei,1 · (ei,3 × ei,4)| , i = 1, . . . ,m. (24)
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Figure 3: Tetrahedron τi, points P (τi) and edges E(τi).

3. Description of the algorithm

In this section we present an optimization algorithm for the numerical computation of

p∗ = argmin
p

{
J(p) subject to C(p) = 0

}
.

Based on the problem characteristics given in Sections 1 and 2, the general design requirements for the
algorithm are as follows:

• The algorithm must handle nonlinear objective functions J and nonlinear constraints2 C;

• It must apply to large computational meshes, where |K(Ω)| ≈ O(106) in two dimensions and |K(Ω)| ≈
O(109) in three dimensions; and

• Its computational performance must scale with |K(Ω)|; specifically, the algorithm must accommodate
scalable iterative linear system solvers.

We use the inexact trust-region sequential quadratic programming (SQP) method of Heinkenschloss and
Ridzal [8] as the starting point. Alternatives include inexact SQP methods described in [21, 22]. The
two key properties of inexact SQP methods are the fast local convergence, based on their relationship to
Newton’s method, and the flexibility to use iterative (‘inexact’) linear systems solvers, enabling an efficient
solution of very large nonlinear optimization problems. It is important to note that the algorithms described
in [8, 21, 22] only provide a general optimization framework; the design of efficient linear system solvers is
left to the user. In the following we describe the structure of linear systems arising in [8] and propose a
scalable method for their solution.

Let L : R2p×Rm → R, L(p,λ) = J(p) +λTC(p), be the Lagrangian for (20). Below we use the symbol
∇ to denote gradients and Jacobians with respect to the variable p. Let pk be the k-th SQP iterate and λk

the Lagrange multiplier estimate at pk. Let Hk = H(pk,λk) be a symmetric approximation of the Hessian
∇2L(pk,λk) of the Lagrangian. Trust-region SQP methods solve (20) by solving a sequence of convex and

2In general, the equality constraints in (20) are polynomial functions in terms of the cell vertex coordinates, expressing the
cell areas. For quadrilateral cells these constraints are bilinear functions of the coordinates. Among other things this implies
that using, e.g., finite difference of the Jacobian to approximate the Hessian yields the exact Hessian operator. However, besides
this fact we are not aware of any algorithms specialized for such kind of constraints and so we approach the algorithm design
as we would for general nonlinear constraints.
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non-convex subproblems derived from

minimize
s

1

2
sTHks+ sT∇L(pk,λk) + L(pk,λk) (25a)

subject to ∇C(pk)s+C(pk) = 0, ‖s‖ ≤ ∆k. (25b)

To solve (25) the method in [8] uses a Byrd-Omojokun composite-step approach. The trial step sk (the
approximate solution of (25)) is computed as the sum of a quasi-normal step nk and a tangential step tk.
The quasi-normal step nk reduces linear infeasibility by approximately solving

nk = argmin
n
{‖∇C(pk)n+C(pk)‖2 subject to ‖n‖ ≤ ζ∆k}, (26)

where ζ ∈ (0, 1) is a fixed constant, using a modified Powell’s dogleg method. Subsequently, the tangential
step tk is computed as an approximate solution of the subproblem

tk = argmin
t

{ 1

2
(t+ nk)THk(t+ nk) + (t+ nk)T∇L(pk,λk) + L(pk,λk)

subject to ∇C(pk)t = 0, ‖t+ nk‖ ≤ ∆k

}
, (27)

using a variant of the Steihaug-Toint projected conjugate gradient (CG) iteration. The Lagrange multiplier
λk is estimated by approximately solving

λk = argmin
λ

‖∇J(pk) +∇C(pk)Tλ‖. (28)

Each of the steps (26), (27) and (28) involves the solution of special saddle-point systems, called augmented
systems. They are used to compute: 1) a Newton direction for the quasi-normal step; 2) the constraint
null-space projections in the projected Steihaug-Toint CG method; and 3) the Lagrange multiplier. For
details, see [8]. Given an optimization iterate pk all systems are of the form(

I ∇C(pk)T

∇C(pk) 0

)(
v1

v2

)
=

(
b1

b2

)
, (29)

where I : R2p → R2p is the identity matrix. The systems are solved iteratively using the generalized mini-
mal residual method (GMRES). The stopping tolerances are managed dynamically by the SQP algorithm.
The key to the efficiency and scalability of the entire optimization framework [8] is in the fast solution of
systems (29), which require a good preconditioner. We use the preconditioner

πk =

(
I 0

0
(
∇C(pk)∇C(pk)T + εI

)−1

)
, (30)

where ε > 0 is a small constant that depends on the mesh size h, e.g., 10−8h. The matrix in the 2×2
block,

(
∇C(pk)∇C(pk)T + εI

)
, is formed explicitly, and its inverse is applied using ML (Trilinos) [23,

24], a smoothed aggregation algebraic multigrid solver/preconditioner. We note that the design of the
preconditioner πk is motivated by a number of important considerations, such as sparsity of ∇C(pk),
possible rank deficiency of ∇C(pk), iteration complexity of the preconditioned augmented system solve,
iteration complexity of the overall SQP scheme, and scalability. These considerations are studied in some
detail in Section 5.1.2, which examines the computational performance of the optimization algorithm using
the application settings introduced below.

Remark 1. It is often desirable to enforce the constraint C(p) = 0 as close to machine precision as possible.
However, the SQP algorithm may terminate three or four digits away from machine precision. To recover
two to three digits of accuracy in the constraint, we postprocess the SQP solution by solving another instance
of the quasi-normal subproblem (26). This heuristic may result in a slight change of the objective function
value, which is a reasonable trade-off.
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4. Applications

This section describes two different applications of the optimization-based volume correction algorithm.
These applications are representative of the type of settings where failure to enforce correct cell volumes
in deforming meshes may adversely impact the accuracy of the numerical solutions. Besides demonstrating
accuracy improvements we also aim to assess the computational performance of the optimization algorithm
and confirm its efficacy and suitability for practical computations.

Both applications involve meshes deforming under a non-divergent velocity field. We recall that tra-
jectories of Lagrangian particles p(t) moving in a flow field with velocity u(p(t), t) satisfy the kinematic
relation

dp

dt
= u(p(t), t) . (31)

The first application setting models the evolution of the computational mesh under a non-divergent flow
field and we refer to it as the Lagrangian mesh motion. Starting from a given initial mesh we solve (31)
numerically to advance the mesh to its final position using a fixed time step. We apply optimization-based
volume correction at each time step. The purpose of this example is to study how volume correction impacts
the quality of the mesh and the accuracy of the vertex trajectories.

The second application combines the optimization-based volume correction algorithm with a semi-
Lagrangian (SL) transport scheme to obtain a volume corrected SL method. This setting allows us to
examine the importance of volume correction in the solution of transport problems and multi-material
simulations.

4.1. Lagrangian mesh motion

Since the meshes in this setting evolve in time we label them and their entities by the time step, i.e.,
K(tn) is a mesh at time t = tn, P (tn) is the set of its vertices p(tn) and so on. We consider the motion of an
initial mesh K(t0) under a non-divergent flow field (31) until a final time tN and denote the exact deformed
mesh at any time t by K(t). In general, the exact mesh is not known, but since non-divergent flows preserve
cell volumes K(tn) has the property c(K(tn)) = c(K(t0)) =: c0 at all time steps tn.

To advance the mesh in time we solve (31) numerically using the mesh vertex positions at the previous

time step as initial values. This gives a sequence of uncorrected mesh vertices {P̂ (tn)}Nn=1 such that

p̂(tn+1) = p̂(tn) + F (u, tn,∆tn) (32)

where tn+1 = tn + ∆tn, F (u, tn,∆tn) is an explicit time stepping scheme, and ∆tn is a suitable time step.
The new mesh vertices are connected by straight line segments following the mesh topology of the initial
mesh. The meshes in the resulting uncorrected sequence {K̂(tn)}Nn=1 have the same connectivity as K(t0),
but their cells are not guaranteed to be valid, nor do these cells necessarily match the initial cell volumes in
K(t0). The sequence of uncorrected meshes provides a benchmark for the volume correction algorithm.

We use this algorithm to construct another sequence {K∗(tn)}Nn=1 of volume corrected meshes as follows.
Suppose that K(t0) is a given valid mesh and that a valid volume corrected mesh K∗(tn) at time step t = tn

has been constructed. We advance this mesh to a valid volume corrected mesh K∗(tn+1) in two stages. The

first stage solves (31) numerically to advance the vertices P ∗(tn) to their uncorrected positions P̃ (tn+1) at
time t = tn+1, i.e., we set

p̃(tn+1) = p∗(tn) + F (u, tn,∆tn) . (33)

Reconnection of P̃ (tn+1) according to the topology of the initial mesh yields an intermediate source mesh

K̃(tn+1). Although K∗(tn) is by assumption valid, the source mesh may contain invalid cells and in general

c(K̃(tn+1)) 6= c0.

The second stage solves the volume correction problem for the pair {K̃(tn+1), c0} to obtain the corrected
mesh vertices P ∗(tn+1), i.e.,

p∗(tn+1) = argmin
p

{
J(p) subject to C(p) = 0

}
.

Linking of P ∗(tn+1) according to the initial mesh topology yields the volume corrected mesh K∗(tn+1).

11



4.2. Volume corrected semi-Lagrangian transport scheme

The second application of the volume correction algorithm combines it with a semi-Lagrangian method
(SL) for the solution of the related transport equations

∂ρ

∂t
+∇ · (ρu) = 0 and

∂ρTs
∂t

+∇ · (Tsρu) = 0, s = 1, . . . , S, (34)

where u is a non-divergent velocity field. Equations (34) describe the evolution of a density ρ and a collection
of passive tracers {Ts}Ss=1 in a velocity field u.

The tracers Ts can also be interpreted as mixing ratios or volume fractions of materials in a multi-material
flow. As a result, besides testing volume correction for transport problems, this application allows us to
examine its impact in the important case of multi-material flow simulations.

We choose the incremental remap approach [6] as a base SL scheme for this application. The SL scheme
exploits conservation of mass (M) and tracer mass (Qs) in Lagrangian cells κ(t) analogous to (1), i.e.,

dM(t)

dt
= 0 and

dQs(t)

dt
= 0 (35)

where

M(t) =

∫
κ(t)

ρ dV and Qs(t) =

∫
κ(t)

ρ Ts dV.

Consider the movement of the Lagrangian cell κ(t) by one time step from κ(tn) to κ(tn+1) where tn+1 =
tn + ∆t. The conservation equation (35) implies a discrete (in time) conservation statement,

M(tn+1) = M(tn) , and Qs(t
n+1) = Qs(t

n) . (36)

The volume averaged density associated with κ(t) is

〈ρ〉(t) =

∫
κ(t)

ρ dV∫
κ(t)

dV
=
M(t)

|κ(t)|
, (37)

and a density weighted volume averaged tracer for Ts is

〈Ts〉(t) =

∫
κ(t)

ρ Ts dV∫
κ(t)

ρ dV
=
Qs(t)

M(t)
. (38)

Together with (37)–(38) the discrete conservation (36) implies that the average density and tracer at time
t = tn+1 are given by

〈ρ〉(tn+1) =

∫
κ(tn+1)

ρ dV∫
κ(tn+1)

dV
=
M(tn+1)

|κ(tn+1)|
=

M(tn)

|κ(tn+1)|
, (39)

and

〈Ts〉(tn+1) =

∫
κ(tn+1)

ρ T dV∫
κ(tn+1)

ρ dV
=
Qs(t

n+1)

M(tn+1)
=
Qs(t

n)

M(tn)
, (40)

respectively. The incremental remap SL scheme uses (39)–(40) in conjunction with a forward or a backward
Lagrangian step to advect the average density and tracers to the next time step. For brevity we describe
the backward SL scheme, the forward version involves the same phases but in different order.

SL schemes use a fixed Eulerian mesh K̄ to represent the approximate solution of (34) as it advances in
time. Assume that the approximate solution at time t = tn is known on K̄, i.e., for every cell κ̄i ∈ K̄ we
are given the approximate mass M̄n

i , mean density ρ̄ni , tracer mass Q̄ns,i and mean tracer T̄ns,i such that

ρ̄ni ≈
∫
κ̄i
ρ(x, tn) dV∫
κ̄i
dV

, T̄ns,i ≈
∫
κ̄i
ρ(x, tn)Ts(x, t

n) dV∫
κ̄i
ρ(x, tn) dV

,

M̄n
i = ρ̄ni |κ̄i|, and Q̄ns,i = T̄ns,iM̄

n
i .
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To advance this solution to a solution M̄n+1
i , ρ̄n+1

i , Q̄n+1
s,i and T̄n+1

s,i at t = tn+1 on the Eulerian mesh we

identify K̄ with a Lagrangian mesh at this future time step, i.e., we set K(tn+1) := K̄. The mesh K(tn+1)
is referred to as the arrival mesh. The backward SL scheme then performs the following sequence of steps:

1. Traceback: Solve numerically (31) backward in time to compute an approximation K̃(tn) of the departure
Lagrangian mesh K(tn). Using, e.g., an explicit Euler method, the equation

p̃n = pn+1 + (−∆t)u(pn+1, tn+1)

yields the vertices P̃ (tn) of the approximate departure mesh.

2. Remap: Conservatively remap quantities from the Eulerian mesh K̄ onto the approximate departure
mesh K̃(tn), i.e., for every cell κ̃i(t

n) ∈ K̃(tn) find M̃n
i , ρ̃ni , Q̃ns,i and T̃ns,i, such that

m∑
i=1

M̃n
i =

m∑
i=1

M̄n
i ,

m∑
i=1

Q̃ns,i =

m∑
i=1

Q̄ns,i,

M̃n
i = ρ̃ni |κ̃i(tn)|, and Q̃ns,i = T̃ns,iM̃

n
i .

(41)

We perform this step following [6]. Van Leer limiting yields the monotone reconstructions of the
density and the tracers necessary for the implementation of the algorithms in this paper.

3. Transfer to Lagrangian arrival mesh: Compute mass and tracer mass on the arrival mesh according to
(36): for all κi(t

n+1) ∈ K(tn+1) set

Mn+1
i := M̃n

i and Qn+1
s,i := Q̃ns,i .

4. Transfer to Eulerian fixed mesh: For all K̄ 3 κ̄i ≡ κi(tn+1) ∈ K(tn+1) set

M̄n+1
i := Mn+1

i and Q̄n+1
s,i := Qn+1

s,i

and compute average cell density and tracer according to (39) and (40):

ρ̄n+1
i :=

M̄n+1
i

|κ̄i|
and T̄n+1

s,i :=
Q̄n+1
s,i

M̄n+1
i

. (42)

Assuming that at t = tn the density is constant on the Eulerian mesh, i.e., ρni = c for some c > 0, let us
examine the base SL solution at t = tn+1. Non-divergent flows preserve Lagrangian volumes and so,

|κi(tn)| = |κi(tn+1)| = |κ̄i|.

On the other hand, because K̃(tn) is an approximation of the true departure mesh, |κ̃i(tn)| 6= |κi(tn)|, which
implies that

|κ̃i(tn)| 6= |κ̄i|. (43)

Since remap preserves constants, the second phase of the base SL scheme yields ρ̃ni = c for all κ̃i(t
n) ∈ K̃(tn).

As a result,

ρ̄n+1
i =

M̄n+1
i

|κ̄i|
=
Mn+1
i

|κ̄i|
=
M̃n
i

|κ̄i|
= ρ̃ni

|κ̃i(tn)|
|κ̄i|

6= c. (44)

Thus, (43) prevents the base SL scheme from preserving a constant density, and under some circumstances
it can also lead to violation of global solution bounds. Indeed, if |κ̃i(tn)| > |κ̄i| equation (44) implies that

ρ̄n+1
i = ρ̃ni

|κ̃i(tn)|
|κ̄i|

> c. (45)

To mitigate these problems we propose to solve a volume correction problem for the approximate departure
mesh by adding the following step to the base SL scheme:

13



1a. Volume correction: Solve the volume correction problem {K̃(tn), c0} with c0 = c(K(tn+1) ≡ c(K̄).

Inclusion of this step yields the volume corrected version of the base SL scheme. The vertices P ∗(tn) of the
volume corrected departure mesh K∗(tn) satisfy

p∗(tn) = argmin
p

{
J(p) subject to C(p) = 0

}
.

4.3. Multi-material incompressible flow

In the multi-material setting Ω(t) = ∪Ss=1Ωs(t), where Ωs(t) is a sub-domain occupied by a material s at
time t. The intersection κs,i(t) := Ωs(t)∩κi(t) gives the part of material s in a Lagrangian cell κi(t) ∈ K(t),
and αs,i(t) = |κs,i(t)|/|κi(t)| is the volume fraction of that material in κi(t). Because κs,i(t) is a Lagrangian
cell on its own, for non-divergent flows its volume is preserved, |κs,i(t)| = |κs,i(t0)|, which implies that

|Ωs(t)| =
m∑
i=1

|κs,i(t)| =
m∑
i=1

|κs,i(t0)| = |Ωs(t0)| , (46)

that is, the total volume of each material is also preserved. Physically consistent simulations of multi-material
flows require accurate approximations of volume fractions and conservation of material volumes.

By choosing ρ = 1 in (34) we can use these equations to study the importance of volume correction in
the multi-material setting, such as the impact of inexact Lagrangian volumes on conservation of material
volumes. Indeed, if ρ = 1 then one can identify the variable Ts(x, t) in (34) with the color (indicator or
characteristic) function for Ωs(t), i.e.,

Ts(x, t) =

{
1 , if x ∈ Ωs(t)
0 , otherwise

, (47)

while its mean cell value

〈Ts〉(t) =

∫
κi(t)

Ts dV∫
κi(t)

dV
=
|κs,i(t)|
|κi(t)|

= αs,i(t) , (48)

gives the volume fraction of material s in a Lagrangian cell κi(t). Finally, since

m∑
i=1

〈Ts〉(t) |κi(t)| =
m∑
i=1

αs,i(t) |κi(t)| = |Ωs(t)| , (49)

the total tracer volume can serve as a proxy for the total volume |Ωs(t)| of material s.
Consider now a solution of this problem by the base SL scheme and assume that at time t = tn the

average cell density ρ̄ni = 1 on the Eulerian mesh. Let us first show that the remap phase of the algorithm

preserves the total volume of material s, that is, |Ω̃ns | = |Ω̄ns |. To this end we use the equivalency between
the total tracer mass and the total tracer volume (which, according to (49), is a proxy for the total material
volume |Ωs(t)|), and show that for non-divergent flows the remap step preserves the latter.

Because ρ̄ni = 1 it follows that on the Eulerian mesh M̄n
i = |κ̄i|, and the total volume of material s on

this mesh is

|Ω̄ns | =
m∑
i=1

T̄ns,i|κ̄i| =
m∑
i=1

T̄ns,iM̄
n
i =

m∑
i=1

Q̄ns,i .

On the other hand, since the remap step preserves constant density, after remapping ρ̄ni to the departure

mesh K̃(tn) we have that ρ̃ni = 1 and M̃n
i = |κ̃i(tn)|. Summing over all departure mesh cells shows that

|Ω̃ns | =
m∑
i=1

T̃ns,i|κ̃i(tn)| =
m∑
i=1

T̃ns,iM̃
n
i =

m∑
i=1

Q̃ns,i .
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Conservation of the total material volume |Ω̃ns | = |Ω̄ns | now follows from the second equation in (41)

m∑
i=1

Q̃ns,i =

m∑
i=1

Q̄ns,i,

which expresses conservation of the total tracer mass at the remap phase.
Let us examine the impact of volume errors (43) in the departure mesh on the accuracy of the base

SL solution M̄n+1
i , ρ̄n+1

i , Q̄n+1
s,i and T̄n+1

s,i in the multi-material context. Besides the inability to recover a
constant density, (44), the base SL scheme also yields erroneous estimates of the total volume of material s.

Indeed, recalling that T̄n+1
s,i = T̃ns,i, we see that if |κ̃i(tn)| 6= |κ̄i|, then

|Ω̄n+1
s | =

m∑
i=1

T̄n+1
s,i |κ̄i| =

m∑
i=1

T̃ns,i|κ̄i| 6=
m∑
i=1

T̃ns,i|κ̃i(tn)| = |Ω̃ns | = |Ω̄ns | .

The errors in total material volumes correspond to artificial losses or gains of materials, i.e., they can lead to
unphysical simulation results. Section 5.2 presents numerical results with the volume corrected SL scheme,
which show that volume correction helps conserve total material volumes to machine precision.

5. Numerical results

We use the application settings from Section 4 to assess the performance of the volume correction algo-
rithm as well as the qualitative and quantitative improvements in the accuracy of Lagrangian mesh motion
and semi-Lagrangian transport schemes. In all numerical examples the initial guess for the optimization
algorithm is a valid convex mesh.

All simulations are performed on an Intel(R) Xeon(R), CPU E5-1620, 3.60 GHz, and the optimization
algorithm is implemented in Matlab (2013a) using vectorized operations. For the application of the algebraic
multigrid preconditioner we rely on the Trilinos package ML [23, 24]. In the solution of all the augmented
systems, see Section 3, we use a tolerance of 5.00e-01; for the ML preconditioner we set the maximum
number of iterations to 20.

5.1. Lagrangian mesh motion
We consider the Lagrangian mesh motion setting, introduced in Section 4, with the velocity field [25]

u1(p, t) =

(
cos
(
tπ
T
)

sin(πx)2 sin(2πy)

− cos
(
tπ
T
)

sin(πy)2 sin(2πx)

)
, (50)

where T is the period, and the rotational velocity field

u2(p) =

(
1− 2y

2x− 1

)
. (51)

Both fields are non-divergent. The computational domain Ω = [0, 1]2 is endowed with a uniform initial mesh
K(t0) comprising m = `2 square elements. The mesh size is h = 1/` and P (t0) contains (`+ 1)2 points.

We solve (31) using the forward Euler method with a uniform time step ∆t. Thus, the vertices of the

uncorrected mesh K̂(tn+1) and the source mesh K̃(tn+1) are given by

p̂(tn+1) = p̂(tn) + ∆tu(p̂(tn), tn), (52)

and
p̃(tn+1) = p∗(tn) + ∆tu(p∗(tn), tn) ,

respectively, where p∗(tn) are the vertices of a volume corrected mesh K∗(tn) at time tn. Finally, we
compute a sequence of approximations to the “exact” Lagrangian meshes {K(tn)}Nn=1 by using a very fine
initial uniform mesh and a refined time step. For notational simplicity in the discussion we denote the exact,
uncorrected and corrected meshes after N time steps by K, K̂ and K∗, respectively, i.e.,

K = K(tN ); K̂ = K̂(tN ) and K∗ = K∗(tN ) . (53)
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Figure 4: The exact mesh K (the different shades of grey serve to distinguish the mesh cells), on the left, and a superimposition

of the uncorrected mesh K̂ (red) and the corrected mesh K∗ (blue) on the right. There are substantial differences between K̂
and K∗, with the latter appearing closer to the exact mesh.

5.1.1. Qualitative tests

The tests in this section use the above Lagrangian mesh motion setting to examine improvements in the
mesh geometry brought about by the volume correction algorithm. We start with a test that demonstrates
how volume correction can produce meshes that are geometrically3 very close to the exact Lagrangian
meshes.

Test 1. We set ` = 8, N = 4 and compare K̂ and K∗ with K defined as in (53). The latter is approximated
numerically by moving a very fine uniform mesh until time tNe with size dx � ∆x, time step dt � ∆t,
` = 256 and such that Nedt = tN . Figures 4-7 summarize the numerical results; in all figures the exact
cells from K are shaded. The first two figures compare the shapes of the exact cells with the shapes of the
uncorrected and corrected cells. Figure 4 shows the exact mesh K on the left (the different shades of grey

serve to distinguish the mesh cells) and a superimposition of K̂ and K∗, on the right. We see substantial

differences between the uncorrected mesh K̂ and the corrected mesh K∗, with the latter appearing closer to
the exact mesh. To assess the improvement in the accuracy of the corrected mesh, in Figure 5 we superimpose
the exact mesh with K̂ and K∗. The right plot in this figure clearly shows that in the “eye-ball” norm the
corrected mesh is in much closer agreement with the exact mesh than the uncorrected mesh.

To give further credence to this observation in Figure 6 we compare the barycenters of the cells in the
three meshes. The green circles are the barycenters of the exact cells, whereas the red squares and the blue
stars show the barycenters of the uncorrected and the corrected meshes, respectively. The left plot reveals
significant errors in barycenter positions on the uncorrected meshes, including many cases of barycenters
located outside their corresponding exact cells. In contrast, the right plot shows that the barycenters of the
corrected cells are very close to the exact ones and, with just few exceptions, inside the exact cells.

To appreciate the dramatic improvements in the mesh geometry afforded by the volume correction
algorithm we examine two of the cells from the uncorrected mesh whose barycenters are grossly incorrect
and do not belong to their respective exact cells. Figure 7 compares the shapes and barycenters of these
two uncorrected cells with the exact cell shapes and the corrected cell shapes. The figure clearly shows the
much improved accuracy of the corrected cells and the nearly perfect match of their barycenters with the

3By “geometrically close” we mean that the cell barycenters and the cell shapes are close.
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Figure 5: Superimposition of the exact mesh K with the uncorrected mesh K̂ (left) and the corrected mesh K∗ (right); the
latter is in much closer agreement with the exact mesh than the uncorrected mesh.

Figure 6: Comparison of the exact barycenters (green circles) with those of the uncorrected mesh K̂ (red squares), on the left,
and the corrected mesh K∗ (blue stars), on the right. In the left plot there are significant errors in barycenter positions; in the
right plot the barycenters of the corrected cells are very close to the exact ones and almost always inside the exact cells.

exact ones.
Comparison of the trajectories of the points {P (tn)}Nn=1 in the exact mesh with the trajectories of

the points in {P̂ (tn)}Nn=1 and {P ∗(tn)}Nn=1 provides another useful diagnostic for assessing the geometric
improvements in the corrected mesh. Figure 8 shows the trajectories of a single point from {P (tn)}Nn=1 and

the corresponding points from {P̂ (tn)}Nn=1 and {P ∗(tn)}Nn=1 for u1 with N = 5 and u2 with N = 100. In
both cases the uncorrected point trajectories deviate significantly from the exact trajectory, whereas the
corrected point tracks the exact trajectory almost exactly.

These results show that volume correction leads to corrected meshesK∗ whose cells have shapes, positions
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Figure 7: The grey shape and the green circle correspond to an exact cell κ ∈ K and its barycenter, respectively. The red lines
and the red square show the shape and the barycenter of corresponding uncorrected cell κ̂ ∈ K̂. The blue lines and the blue
star are the shape and the barycenter of the corrected cell κ∗ ∈ K∗. The corrected cells feature a much improved accuracy and
a nearly perfect match of their barycenters with the exact ones.

Uncorrected mesh Corrected mesh

` N β invalid non-convex invalid non-convex
8 4 5.0e-06 12 20 0 0
16 10 5.0e-06 8 88 0 0
32 19 1.0e-10 0 44 0 0
64 50 1.0e-10 0 80 0 0

Table 1: Numerical results of Test 2; ` is the number of elements in each direction, N is the number of time steps, β is the
penalization parameter, ‘invalid’ and ‘non-convex’ are the numbers of invalid and non-convex cells in the uncorrected mesh K̂
and the corrected mesh K∗. These results show that, for empirically chosen values of β, the optimal meshes are always convex.

and barycenters very close to those of the exact Lagrangian mesh K, and whose points track the exact point
trajectories very closely. Among other things, the latter suggests that application of the volume correction in
conjunction with a transport scheme may allow for bigger time steps in the simulation of advection problems
such as (34). The results in Section 5.2 corroborate this conjecture.

Test 2. This test examines the volume correction in the context of mesh quality improvement. To this
end, we consider an invalid and/or non-convex uncorrected mesh K̂ and compute the corrected mesh K∗

by solving the modified optimization problem (20). Table 1 reports `, N , β, and the number of invalid and

non-convex cells in K̂ and K∗. This test uses the field u1 in (50). The results in Table 1 demonstrate
that, for empirically chosen values of β, the optimal meshes are always convex. In Figure 9 we report the
uncorrected mesh K̂ (left) and the corrected mesh K∗ (right) for the first row of Table 1. For the same row,

in Figure 10 we report K̂ highlighting in dark brown the invalid cells and in light brown the non-convex
ones. Though these results show that the logarithmic barrier yields convex meshes, the convexity of K∗

highly depends on the choice of β.

5.1.2. Performance tests.

In this section we modify the Lagrangian mesh motion setting to study the computational cost of the
optimization algorithm, in terms of iteration complexity and runtime. Since the focus is on the performance
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Figure 8: Comparison of the exact trajectory of a single point of {P (tn)}Nn=1 (black line) with the trajectories of the corre-

sponding uncorrected (red squares) and corrected (blue stars) points from {P̂ (tn)}Nn=1 and {P ∗(tn)}Nn=1, respectively. Left
plot: u1 and N = 5. Right plot: u2 and N = 100. The uncorrected point deviates significantly from the exact trajectory,
whereas the corrected point tracks the exact trajectory almost exactly.

Figure 9: Comparison of the uncorrected mesh K̂ (left), corresponding to the data in the first row of Table 1, and the resulting
volume corrected mesh K∗ (right).
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Figure 10: Uncorrected mesh for the first row in Table 1. The dark and light shading marks the invalid and the non-convex
cells, respectively, in K̂.

of the algorithm we restrict attention to a single application of the mesh correction procedure (19) to a

given source mesh K̃ and a vector of desired mesh volumes c0, and report the iteration complexity and the
computational costs. To challenge the algorithm we set K̃ = K̂, i.e., the source mesh coincides with the
uncorrected mesh at time tN . We remind that the latter is generated by using (52) to solve numerically (31)
until time tN using the points of the uniform mesh as initial condition. Therefore, the vector c0 corresponds
to the volumes of the cells in the initial uniform mesh. Note that for larger N the degree of deformation of
K̃ increases.

The performance studies involve two approximations Hk of the Hessian of the Lagrangian: 1) ‘Analytic
Hessian’ refers to combining the analytic action of the objective function Hessian, ∇2J(p), on some vector v,
with finite differencing4 the action of the constraint Jacobian transpose, ∇C(p)T , on the Lagrange multiplier
vector λ in the direction v; 2) ‘Gauss-Newton Hessian’ refers to using only the analytic action of the Hessian
of the objective function, ∇2J(p), on some vector v. We conduct performance tests using the velocity field
u1 in (50). Tables 2 and 3 summarize the results: for increasing values of ` we double (Table 2) or quadruple
(Table 3) N in order to obtain various degrees of deformation.

We report the number of SQP, CG, and GMRES (total and average) iterations, the computational time
and the percentage of time spent in the multigrid solver ML. Overall, as we increase the number of mesh cells
we observe little to no increase in iteration complexity, evidenced by the columns ‘SQP’, ‘CG’ and ‘GMRES
tot.’; an approximately linear increase in total runtime, column ‘CPU’, and the dominating computational
cost of the multigrid preconditioner, column ‘% ML time’. In essence, the computational complexity of
our approach is determined fully by the computational complexity of the multigrid preconditioner, and the
numerical evidence points to scalability at the large scale. We also note that the differences between the two
approximations of the Hessian of the Lagrangian are negligible, so the Gauss-Newton approximation may
be preferred in practice due to ease of implementation.

A non-convex source mesh provides an opportunity to test both the performance of the algorithm and
the ability of the logarithmic barrier penalty to enforce cell convexity in the volume compliant mesh. To
this end we repeat the above tests using a source mesh K̃ obtained by evolving the initial uniform mesh

4The bilinearity of the constraints guarantees that this approximation is exact.
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Analytic Hessian

` SQP CG GMRES tot. GMRES av. CPU % ML time
64 3 2 34 2.3 0.962 59
128 3 2 42 2.8 3.551 75
256 2 1 30 3.0 10.544 82
512 3 1 49 3.5 87.076 88

Gauss-Newton Hessian

` SQP CG GMRES tot. GMRES av. CPU % ML time
64 3 2 28 1.9 0.860 65
128 3 2 36 2.4 3.115 81
256 2 1 25 2.5 8.787 85
512 3 1 43 3.1 73.775 90

Table 2: Performance results where the source mesh K̃ is an uncorrected mesh obtained by solving (31) until time tN using a
uniform mesh for the initial condition and for the vector of desired volumes c0. We use N = 10 for ` = 64 and we double N as
we refine the mesh. We observe nearly constant iteration complexity and a linear increase in runtime. Note that approximately
90% of CPU time is spent in the ML preconditioner on the finest mesh. This points to the potential for scalability for large
problems.

until the deformation is such that some cells become non-convex. For different ` we report in Table 4 the
values of N and the number of non-convex cells in K̃ (‘non-convex’ in the table). The parameter Nguess is
the number of time steps used to generate the initial guess for the SQP algorithm, this mesh is obtained by
solving (31) until time tNguess with the same parameters used to compute K̃.

Note that for all ` the volume compliant mesh K∗ is convex, i.e., the logarithmic barrier penalty is
sufficient to enforce convexity constraints. In Table 5 we observe roughly constant iteration complexity and
a linear increase in CPU time as we refine the mesh. The absolute CPU time is slightly higher compared to
Tables 2 and 3. This is expected due to the additional nonlinear term in the objective function.

We now zoom in on a detailed study of the preconditioner πk developed in Section 3. As stated earlier,
this preconditioner is key for the efficiency of the algorithm. We discuss the results of our performance study
by calling out several aspects that influence the design of πk.

(a) Sparsity : The Jacobian matrix ∇C(pk) may be very large, but it is also very sparse. This is due
to the fact that cell volume computations only involve mesh points that are shared by a small number
of immediate neighbors. Therefore, performing a sparse matrix-matrix multiplication to form the ma-
trix

(
∇C(pk)∇C(pk)T + εI

)
is efficient in this context. Moreover, the cost of forming the matrix is amor-

tized over many augmented system solves in the SQP algorithm, because the matrix is recomputed only
when pk changes. Some evidence of the amortization can be found in the dominating computational cost of
the ML preconditioner, column ‘% ML time’ in Tables 2, 3 and 5.

(b) Degeneracy : Depending on the mesh connectivity and the boundary constraints, it is possible that
the matrix ∇C(pk) is rank-deficient. Our implementations of the SQP algorithm and the GMRES solver
allow for such scenarios. However, the preconditioner πk is only well-posed with the addition of the εI term.
As a whole, πk is positive definite. In our performance examples ∇C(pk) is mildly rank-deficient, yet Tables
2, 3 and 5 exhibit no adverse effects on the solvability of augmented systems or the convergence of the SQP
algorithm.

(c) Optimal iteration complexity : When ∇C(pk) is full-rank, and ε = 0, we can prove that GMRES
applied to (29) with the πk preconditioner converges in at most three iterations, see [26]. Overall, we
observe very small, and nearly constant, numbers of GMRES iterations per augmented system solve in all
numerical examples, including those with rank-deficient Jacobian matrices. In Tables 2, 3 and 5 the average
GMRES iteration numbers range from two to five, columns ‘GMRES av.’. The slight deviation from the
theoretical bound of three iterations is due primarily to the inexact application of the ML preconditioner
and the nonzero ε, ε = 10−8h.
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Analytic Hessian

` SQP CG GMRES tot. GMRES av. CPU % ML time
64 3 2 34 2.3 0.962 59
128 3 2 42 2.8 3.668 78
256 3 2 52 3.5 17.915 84
512 6 3 114 4.1 193.779 88

Gauss-Newton Hessian

` SQP CG GMRES tot. GMRES av. CPU % ML time
64 3 2 28 1.9 0.860 65
128 3 2 36 2.4 3.159 82
256 3 2 42 2.8 14.426 87
512 6 3 96 3.4 163.074 91

Table 3: Performance results where the source mesh K̃ is an uncorrected mesh obtained by solving (31) until time tN using a
uniform mesh for the initial condition and for the vector of desired volumes c0. We use N = 10 for ` = 64 and we quadruple
N as we refine the mesh. As before, we observe nearly constant iteration complexity and a linear increase in runtime, i.e., our
approach is robust to added mesh deformation.

` N non-convex Nguess
64 66 52 56
128 165 64 155
256 425 64 415
512 1127 112 1117

Table 4: Parameters used for performance tests in the non-convex case. Results are reported in Table 5. The source mesh K̃
is computed solving (31) until time tN using a uniform mesh for the initial condition and for the vector of desired volumes c0.

N is chosen such that K̃ has some non-convex cells (see the column ‘non-convex’). Nguess is the number of time steps used to
generate the initial guess for the SQP algorithm, this is obtained by solving (31) with the same paramenters used to compute

K̃.

Analytic Hessian

` SQP CG GMRES tot. GMRES av. CPU % ML time
64 5 15 101 2.8 2.475 66
128 4 9 106 4.1 8.799 78
256 5 5 130 5.0 45.733 83
512 6 1 100 3.8 184.446 83

Gauss-Newton Hessian

` SQP CG GMRES tot. GMRES av. CPU % ML time
64 5 5 64 2.5 1.666 63
128 4 4 79 3.8 6.466 82
256 5 5 126 4.8 43.241 86
512 6 6 100 3.8 183.697 86

Table 5: Performance results in the non-convex case. The parameters used to generate K̃ are reported in Table 4. As for the
convex meshes, we observe nearly constant iteration complexity and, overall, scalable performance.

22



(d) Applicability of multigrid : A key consideration in formulating πk is rooted in the structure of the
Jacobian matrix. In the context of volume constraints (4) the graph of the matrix ∇C(pk) resembles the
graph divergence. Therefore, the graph of ∇C(pk)∇C(pk)T resembles the graph div-grad operator, i.e., the
graph Laplacian. This is why algebraic multigrid is a good choice for the application of our preconditioner.
The linear increase in CPU time per SQP iteration (obtained by dividing ‘CPU’ column values by ‘SQP’
column values in Tables 2, 3 and 5) as the mesh is refined is evidence of the preconditioner’s suitability for
the volume correction problem.

(e) Scalability : As is apparent from our numerical examples, the SQP algorithm requires a very small,
mesh-independent number of iterations to achieve near machine accuracy. Similarly, the inner projected
CG algorithm converges in a handful of iterations. Finally, as mentioned above, the number of GMRES
iterations per augmented system solve is also modest. All three iteration numbers are bounded by a small,
mesh-independent constant. Here, this constant is 6, based on the results from Tables 2, 3 and 5. Therefore,
our algorithm inherits its scalability directly from the algebraic multigrid solver.

5.2. Semi-Lagrangian transport

This section compares the base semi-Lagrangian transport scheme from Section 4.2 with its volume
corrected version. We use the two schemes to solve (34) on the square domain Ω = [0, 1]2 with the velocity
field (50). The initial densities and tracers are drawn from the following set of constant and piecewise-
constant functions on the unit square:

ρcyl,0(x, y) =

{
2 (x, y) ∈ B0.15(0.5, 0.75)

1 (x, y) /∈ B0.15(0.5, 0.75),

ρcyl,1(x, y) =


0 (x, y) /∈ B0.15(0.6, 0.75) and

(x, y) ∈ [0.575, 0.625]× [0.60, 0.85]

0.5 otherwise,

ρcyl,2(x, y) =


0 (x, y) /∈ B0.15(0.4, 0.65) and

(x, y) ∈ [0.375, 0.425]× [0.50, 0.75]

0.5 otherwise,

ρcyl,3(x, y) = 1− ρcyl,1(x, y)− ρcyl,2(x, y), and ρconst(x, y) = 2.

where Br(xc, yc) is the ball of radius r centered in (xc, yc).

Test 1. The purpose of this test is to illustrate the importance of volume correction in multi-material
computations. As explained in Section 4.3 solution of (34) with ρ = 1 and S tracers simulates a multi-
material setting comprising S different materials. In this case, the total tracer volume of Ts serves as a
proxy for the total volume |Ωs(t)| of material s.

In the test we consider the advection of S = 3 tracers T1, T2 and T3 with initial distributions T 0
1 = ρcyl,1,

T 0
2 = ρcyl,2, and T 0

3 = ρcyl,3. We set the period T of the velocity field (50) equal to 1 and run the simulation
for a total of 10 periods. Thus, the final time is tN = 10, where N = 1630. We compute the difference
between the initial tracer volumes and the volumes at each time step. We report the maximum value of such
difference over the 10 periods in Tables 6 (without correction) and 7 (with correction). These results show
that the volume correction gives a volume error close to machine epsilon. On the other hand, without the
volume correction the errors in tracer volumes are not insignificant. Further evidence is provided in Figure
11 where, for ` = 64, we report the graphs of the tracer volume errors for t ∈ (0, tN ) with and without the
volume correction.

Test 2. The purpose of this test is three-fold. First, it demonstrates the importance of volume correction
for the preservation of constant densities in semi-Lagrangian transport schemes, i.e., for the mitigation of
(44). Second, the test illustrates how (45) can lead to potentially significant violations of global solution
bounds by an uncorrected scheme. Finally, the test confirms that volume correction completely eliminates
violation of solution bounds, thereby ensuring physically meaningful solutions.
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Figure 11: For Test 1, tracer volume errors with ` = 64, with (blue) and without (red) correction. From top to bottom: tracer
1, 2, and 3; on the horizontal axis, the number of time steps. These results show that the volume correction gives a volume
error close to machine epsilon.
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` error T1 error T2 error T3

8 7.8238e-04 1.2839e-03 2.2198e-03
16 2.3068e-04 5.1011e-04 7.7943e-04
32 3.5385e-05 9.1752e-05 1.3297e-04
64 5.3857e-06 1.3853e-05 1.9531e-05
128 7.2083e-07 1.7872e-06 2.5131e-06

Table 6: For Test 1, tracer volume errors without volume correction.

` error T1 error T2 error T3

8 7.6328e-17 1.5266e-16 4.4409e-16
16 3.8858e-16 6.3144e-16 9.9920e-16
32 2.2100e-15 4.2119e-15 5.9952e-15
64 6.0854e-15 3.2439e-15 7.5495e-15
128 7.8514e-15 4.4444e-15 1.0769e-14

Table 7: For Test 1, tracer volume errors with volume correction. These results show that the volume correction gives a volume
error close to machine epsilon.

In this test we solve the density equation from (34) with two different initial density distributions, ρconst
and ρcyl,0, respectively, using the uncorrected and corrected semi-Lagrangian schemes from Section 4.2.
Time stepping is by Runge-Kutta 4 and the Forward Euler time integration schemes with two constant time
step sizes, ∆t = 0.006 and ∆t = 0.0001, respectively. The choice of the time steps ensures that spatial and
temporal errors are of comparable sizes. In the first case the number of time steps is N = 250 and in the
second case is N = 15000. We start by examining the preservation of constant densities with and without
the volume correction. Specifically, using the initial density ρconst we compute, at time tN = 1.5 the L1,
L∞ and L2-norms of the difference between the initial and the final densities. For ∆t = 0.006 the first
rows in Table 8 show that with both Runge-Kutta 4 and Forward Euler the uncorrected semi-Lagrangian
scheme does not preserve the initial constant density. On the other hand, the third rows in the same table
reveal that the volume-corrected transport scheme preserves ρconst to a machine precision. The second rows
in Table 8 show that without volume correction the errors in the constant density approximation persists
despite decreasing the time step size to ∆t = 0.0001.

The next suite of results focusses on the violation of physical solution bounds with and without the
volume correction. For the same parameters and for both ρconst and ρcyl,0 we report in Tables 9 and 10
respectively, the maximum and minimum values of the density over the time interval (0, tN ); the results in
the first and third row show that only with volume correction the bounds are preserved. The results in the
second row show that, without volume correction, even decreasing the time step size to ∆t = 0.0001, bounds
are violated. In Figure 12 we illustrate these results reporting a slice of the density distribution; here, the
red line corresponds to ρconst (left) and ρcyl,0 (right). The green and blue lines correspond to the densities
obtained with and without correction using the Forward Euler scheme with ∆t = 0.006. Figures 13 and
14 illustrate the same result, for ρconst and ρcyl,0 respectively, displaying the density configuration without
(left) and with (right) volume correction.

6. Conclusion

We developed and studied numerically a new optimization-based method for volume preserving mesh
correction, and an efficient optimization algorithm for the solution of the associated optimization problem.
Our work formulates a new approach for improving the accuracy and physical fidelity of numerical schemes
that rely on Lagrangian mesh motion, while the availability of a fast optimization algorithm makes the
approach a practical alternative to existing volume correction methods.

Besides demonstrating the computational efficiency of the approach, numerical tests also reveal significant
geometric improvements in the corrected meshes, which make the shapes and locations of their cells closer
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Runge-Kutta 4

Correction ∆t L1 L∞ L2

no 0.006 1.961e-05 5.235e-05 2.285e-05
no 0.0001 5.265e-07 1.378e-06 6.154e-07

yes 0.006 1.100e-12 4.555e-11 2.408e-12

Forward Euler

Correction ∆t L1 L∞ L2

no 0.006 5.057e-02 3.191e-01 7.928e-02
no 0.0001 1.331e-03 9.134e-03 2.135e-03

yes 0.006 1.276e-12 3.804e-11 2.563e-12

Table 8: For Test 2, norms of the difference between the initial and the final density with ρconst and ` = 128. These results
demonstrate that for the same ∆t only the volume correction can eliminate the error. The test case with time step ∆t = 0.0001
(second row) shows that, even reducing the time step, the error persists without volume correction.

Runge-Kutta 4

Correction ∆t min max

no 0.006 1.999958147187 2.000052352773
no 0.0001 1.999998877779 2.000001378110

yes 0.006 1.999999999960 2.000000000046

Forward Euler

Correction ∆t min max

no 0.006 1.680896653394 2.077796635104
no 0.0001 1.990865550875 2.002007661565

yes 0.006 1.999999999962 2.000000000038

Table 9: For Test 2, minimum and maximum values of ρconst over the time interval (0, tN ), with ` = 128. These results
demonstrate that for the same ∆t only the volume correction preserves the bounds. The test case with time step ∆t = 0.0001
(second row) shows that, even reducing the time step, the bounds cannot be preserved without volume correction.

Runge-Kutta 4

Correction ∆t min max

no 0.006 0.9999790735933 2.000008983643
no 0.0001 0.9999994388897 1.999997888211

yes 0.006 0.9999999999783 1.999999999265

Forward Euler

Correction ∆t min max

no 0.006 0.8404478260526 2.067996323565
no 0.0001 0.9954327396943 2.001650970717

yes 0.006 0.9999999999731 1.999998996500

Table 10: For Test 2, minimum and maximum values of ρcyl,0 over the time interval (0, tN ), with ` = 128. These results
demonstrate that for the same ∆t only the volume correction preserves the bounds. The test case with time step ∆t = 0.0001
(second row) shows that, even reducing the time step, the bounds cannot be preserved without volume correction.
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Figure 12: Plots of slice of the density at time tN = 1.5 for Forward Euler simulations with ∆t = 0.006 with and without
correction. The exact densities (in red) correspond to ρconst (left) and ρcyl,0 (right). These plots show that the volume
correction preserves bounds.

Figure 13: Plots of the density at time tN = 1.5 for Forward Euler simulations with ∆t = 0.006 without (left) and with (right)
correction with initial density ρconst. These plots show that the volume correction preserves bounds.
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Figure 14: Plots of the density at time tN = 1.5 for Forward Euler simulations with ∆t = 0.006 without (left) and with (right)
correction with initial density ρcyl,0. These plots show that the volume correction preserves bounds.

to those of the exact Lagrangian mesh. In particular, the trajectories of the corrected mesh vertices are
very close to their true Lagrangian trajectories. Further numerical tests confirm that the geometric mesh
improvements enable larger time steps in the context of, e.g., semi-Lagrangian transport schemes.

In addition to improvements in mesh geometry, the algorithm is also capable of recovering a valid mesh
with convex cells from a mesh containing multiple invalid and/or non-convex cells, which suggest potential
utility of the approach in a mesh quality improvement context.

In the future work we will address the development of optimization algorithms that robustly and scal-
ably handle additional mesh-quality constraints, expressed as nonlinear inequalities, based on interior-point
methods. We also plan to investigate the rigorous enforcement of mesh validity. Finally, we wish to apply
our methods to tetrahedral meshes, and study extensions to other types of cells in three dimensions.
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